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Motivation

Automated malware classification
— Needed to combat today’s malware

Full automation

— Requires classifiers very low FP rate with an
acceptable FN rate

Typically files are analyze in isolation

Recent work considers file/machine
relationship [Chau2011],[Ye2011]

Can file container relationships help?



Using File Relationships
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Baseline Classifier

e Dvynamic Translation

runs files in a sandbox in

the AM engine ¥
 Baseline Classifier
Features
— API w/ parameters Dynamic

Translation

— API tri-grams Engine

— Unpacked strings
— Static analysis

e Main Goal: Train a DT Logs

2
classifier to determine if —

an unknown file is —
malware or benign ynamic Translation



Baseline Classifier Training

Trained with 2.6M labeled files

— 1.8M malware
— 0.8M benign

179K Sparse Binary Features

134 malware families, general malware and
benign classes

Multi-class logistic regression
1.39% FP rate, 0.7% FN rate



Container Classification
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Distribution of Files in the Malware
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Distribution of Files in the Benign
Containers
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Container Classification

e Union Bound
pc(i=1=1-p.(; =0)=1—-[1:Z6(1 — ppsr)
* Max Neighborhood

Pc = Pb,max
* Biased Logistic Regression Model
pe(yi = 1lx) =v'x + b



Biased Logistic Regression Features

« Histogram of contained file probabilities
— Split the interval [0,1] into 20 equally sized bins

— Features 2j and 2j+1: fraction and logarithm of the number of
contained files predicted to be malware

— Absolute and relative numbers that may affect our decision
— Similar histograms for benign and inconclusive files

* Three additional features

P
_ l()g bmax
1-Pbmax
— log N¢
. Nf - number of files in the container

— Product of the first additional features

» Captures interactions between the number of files and the maximum file
probability



Container Classifier Training

e Bi-partite graph
— 4.1M nodes, 24.0M edges

719K containers
— 604K malicious, 115K benign

e 3.4M files
— 482K malicious, 2.9M benign



Container Classification
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File Relationship Classification
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File Relationship Classifier

* Biased Logistic Regression
- pr(yi=1lx) =u'x+b
* Features

— Histogram of container probabilities which
include the file.

— Features 2j and 2j+1: fraction and logarithm of
the number of containers.
— Histograms malicious and benign containers

Pb
1-pp

— log



Comparison of Baseline and File
Relationship Classifier
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Trojan variant in the Vundo
family.

Included in 8 containers labeled
“Malware Container”

Detected by at least 14 scanners.

Baseline malware classifier failed
to correctly identify the file as
malicious

The relationship classifier raised
the probability 33% to 98.37%.

Relationship classifier can help to
correctly identify malicious files
even when the baseline classifier
misclassifies them



calleng.dll Benign Example

Manually determined to be benign

Determination #Scanner |#Submissions
Detections

Baseline malware classifier

0d...bc.rar No Determination 13 o
— 0% that this file is malware

B e 2 e Originally distributed as part of the
ec...da No Determination 3 2 legitimate social networking software

. RarSfx) on row 4 with n ion
(RarSfx) No Determination 0 2 ( ars ) f)_ © th no detections

is the legitimate PalTalk.

[esing N [BRslrEen | 7 K e  While calleng.dll itself is not
(RarSfx) No Determination 9 4 malicious

— Appears to be commonly used by
malware authors in some
manner

e After running the relationship
classifier on calleng.dll the malware
probability increased to 44.9%

e Not sufficient to be classified as
malware



File Relationship Classification

FP Rate PoSt, P>t | PoSt, | Pyt
prStl‘ prStr pl‘>tl‘ pr>tr

1.0% Malware 6269 161 32,170 480,548
Benign 2,909,583 15,561 14,590 14,959
0.5% Malware 183,454 15,406 109,043 211,245

Benign 2,950,180 1,556 1,546 1,411



False Positive Histogram
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Heatmap of Containers Associated
with False Positives
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Summary

Container relationship can improve an
individual file malware classifier

Biased logistic regression leads to good
container classification

Improved relationship classification
— Better FN rates at low FP rates
Orthogonal to baseline classifier

Improvements in the baseline classification

— Lead to improvements in the classification of files in
containers
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